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Figure 1: Dancing Armadillo. A set of dancing poses created using our mesh deformation technique. The original pose is on the left and the
rectangles depict zoomed portions of the model containing high-frequency surface details shown before and after a deformation.

Abstract

We present an interactive mesh deformation technique based on
parametric curve manipulation. A set of lines sketched over the
projection of the mesh model is used to create parametric curves,
which can be interactively manipulated, thus deforming the associ-
ated surfaces. Such curves can be further combined to create skele-
tons in a simple way, providing some extra control over the defor-
mation process. Additionally, parametric curves can be automati-
cally extracted from suggestive contours, allowing the deformation
to be performed directly on visually-important details of the model.
A major advantage of our technique is that it requires no prepro-
cessing, allowing users to immediately produce visually-pleasing
mesh deformations while using an intuitive interface. This makes
it a good choice for artistic prototyping, as well as for casual users.
We demonstrate that, despite its conceptual simplicity, it is quite
general, producing results that are visually similar to the ones ob-
tained with more sophisticated and computationally-intensive mesh
deformation and skinning techniques.
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1 Introduction

The realism of computer-generated images depends heavily on the
ability to accurately represent geometric details of the objects in the
scene. Modeling, however, is a labor-intensive task that can be sig-
nificantly accelerated with the use of 3D scanners. Although 3D
scanners provide a fast solution for the problem of sampling ge-
ometrically complex shapes, algorithms for surface reconstruction
from point clouds tend to produce non-structured models consist-
ing of a single polygonal mesh. Providing the user the means for
changing pose and animating the resulting representations is key
for using these models in applications such as computer movies
and games. The challenge is to provide an intuitive interface and
interactive feedback, while preserving surface details and accom-
modating user-defined constraints.

We present a new interactive technique for geometric shape de-
formation of 3D meshes. Our approach requires no preprocess-
ing, allowing users to immediately create visually-pleasing results
through the use of a simple and intuitive interface. As such, it pro-
vides a good choice for artistic prototyping and casual users. We
use parametric curves created from 2D sketches or from automati-
cally extracted suggestive contours [DeCarlo et al. 2003] to deform,
twist and scale the associated mesh. The inherent smoothness of
parametric curves is transferred to the induced global deformations.
Our approach also supports some user-defined constraints, such as
the specification of rigid segments for deforming articulated fig-
ures. We demonstrate that, despite its conceptual simplicity, our
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approach is quite general, producing results that are visually simi-
lar to the ones obtained with more sophisticated mesh deformation
techniques [Botsch and Kobbelt 2004; Kobbelt et al. 1998; Alexa
2003; Lipman et al. 2004; Lipman et al. 2005; Sorkine et al. 2004;
Huang et al. 2006; Yu et al. 2004; Zayer et al. 2005; Zhou et al.
2005] and skinning [Mohr et al. 2003; Kry et al. 2002], which tend
to require some considerable preprocessing time. One should note,
however, that these techniques usually optimize some aspect of the
deformation (e.g., volume preservation), which our approach does
not.

Our technique is considerably faster than previous approaches for
achieving visually-similar results, being able to handle very large
meshes at interactive rates. Moreover, it handles arbitrary meshes,
including multiple connected component ones, non-orientable and
non-manifold surfaces. Figure 1 shows the Armadillo model in
some dancing poses obtained using our technique. The rectangles
depict zoomed portions of the model containing high-frequency
surface details shown before and after a deformation. These poses
illustrate the use of deformations applied to the model’s arms, legs,
and torso, as well as the use of some bending and scaling opera-
tions.

2 Related Work

There has been a considerable amount of work on model deforma-
tion in recent years. Free-Form Deformation (FFD) and its varia-
tions perform object deformation indirectly by manipulating a set
of control points (handles) that deform the space containing the ob-
ject. Such handles can be defined as 3D lattices [Coquillart 1990;
MacCracken and Joy 1996; Sederberg and Parry 1986], a set of
curves [Chang and Rockwood 1994; Singh and Fiume 1998], or
points [Hsu et al. 1992; Sumner et al. 2007].

Sumner et al. [Sumner et al. 2007] use a graph to deform the space
where an object is embedded. This graph is created using the object
surface (which is not restricted to be a mesh) allowing the user to
directly manipulate parts of the object. The authors ensure that the
deformation of each graph’s node is locally rigid by solving a non-
linear optimization problem.

Skinning techniques [Mohr et al. 2003; Kry et al. 2002] are prob-
ably the most popular mesh deformation techniques, but they tend
to require a considerable amount of time for the artist to find the
correct weights for each object. Although there exist some tech-
niques for automatically computing such weights [Kry et al. 2002]
(and references therein), they are often computationally expensive
and do not always produce the desired deformations.

Multiresolution techniques [Botsch and Kobbelt 2004; Guskov
et al. 1999; Kobbelt et al. 1998; Zorin et al. 1997] decompose the
surface into a smooth base representation (low frequency) and the
surface details (high frequencies). Mesh deformation is applied di-
rectly to the base representation, after which the details are added
back (as displacement vectors).

Some techniques avoid factoring the base surface representation by
directly applying the deformation to the original mesh. These tech-
niques try to preserve some differential properties of the mesh, such
as discrete Laplacian coordinates [Alexa 2003; Lipman et al. 2004;
Lipman et al. 2005; Sorkine et al. 2004] or gradient functions over
the mesh [Yu et al. 2004; Zayer et al. 2005; Zhou et al. 2005]. All
these techniques treat mesh deformation as a minimization problem
and, in general, require the solution of a linear system, which tends
to introduce some delay before the user can actually start deform-
ing the model. The energy function to be minimized contains both a
detail preservation term and some position constraints [Huang et al.
2006]. The detail preservation term is nonlinear as it also depends

on the position constraints. For efficiency reasons, the non-linear
term is often approximated by a linear one using various strategies,
such as local linearization [Sorkine et al. 2004], heuristic approx-
imations for the local rotations [Lipman et al. 2004], propagation
of user-defined transformations [Yu et al. 2004], and interpolation
from handles [Zayer et al. 2005; Zhou et al. 2005; Au et al. 2007].

Botsch et al. [Botsch et al. 2006] presented a physically-plausible
approach for mesh deformation that uses regions of the mesh as ma-
nipulation handles. While the interaction metaphor is very intuitive,
the technique is not suitable for interactive modeling sessions.

Our approach avoids the need of performing non-linear minimiza-
tion by using a simple, although effective, strategy: we represent
the coordinates of the mesh vertices in the regions of interest (ROI)
in terms of frame fields associated to parametric curves used to con-
trol the deformation. Since such frame fields are instantly updated
as the curves are deformed, so are the coordinates of the mesh. By
using external, as opposed to local frames, our approach provides
a computationally efficient and general framework for mesh defor-
mation.

Curves have been used to guide mesh deformation [Nealen et al.
2005; Zhou et al. 2005]. Zhou et al. [Zhou et al. 2005] use WIRE
curves [Singh and Fiume 1998] to specify where a few vertices of
the mesh should deform to, defining constraints to a linear system.
In our approach, curve deformation is directly transferred to the
mesh. Nealen et al. [Nealen et al. 2005] use curves to edit details
of the mesh, while we use curves to specify both global and local
deformations.

3 Technique Overview

Figure 2: Technique overview step one. The user oversketches the
parts of the model he/she would like to deform (left and center).
Each sketched line becomes a parametric curve in 3D that will be

used as a handle for deforming the model (right). The small white
balls represent the curves’ control points.

An interactive mesh-deformation session based on our approach
consists of three main steps:

• Sketching 2D curves over the 3D model (Figure 2). The user
oversketches the parts of the object he/she would like to de-
form. Each sketched line is turned into a parametric curve in
3D, which will be used as a handle for deforming the model.
While oversketching, the user can freely change the camera’s
viewpoint. Figure 2 (right) shows a set of parametric curves
created for different parts of the dino model. In addition, para-
metric curves can be automatically extracted from suggestive
contours [DeCarlo et al. 2003], allowing the user to directly
deform some visually-important features of the model (Sec-
tion 5);

• Connecting individual curves to form skeletons, as shown in
Figure 3. Creating skeletons with our technique is a simple
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and intuitive task. However, there is no need to have a single
skeleton per object. In fact, the user may even want to keep
all curves separated (disconnected) from each other;

• Deforming the model by moving the control points of the para-
metric curves in 3D. Figure 4 illustrates this. On the left, the
before and after states of a twist applied to the neck of the
dino model. On the right, the deformation has been applied to
its tail.

Figure 3: Technique overview step two. The user may want to
combine parametric curves in order to create complex skeletons.

3.1 Region segmentation and handle creation

Our interface for sketching the curves is similar to the one used
by [Kho and Garland 2005]. Given the sketched curves over the
model, they are filtered as described in [Kho and Garland 2005] and
parameterized to the [0,1] interval. Equally-spaced points in this
parametric space are then projected on the mesh using the method
described in [Moller and Trumbore 1997]. The projected points
(on the mesh surface) are used to create an interpolating parametric
curve that will be used as a deformation handle. We have chosen
to use Catmull-Rom splines [Catmull and Rom 1974] because of
their global smoothness, local control and interpolating character-
istics. Hermite curves [Mortenson 1997] are also provided if the
user wants to control the curves’ tangents at the end points. The
region of interest for the deformation produced by such a handle
is delimited by two cutting planes positioned at the 3D curve end
points. The orientation of each plane is defined by the curve’s tan-
gent at the corresponding end point.

Figure 4: Technique overview step three. By modifying a 3D curve,
its deformation is transferred to the model. Twisting dino’s neck
(left) and lifting its tail (right).

The control points of the parametric curves obtained as described
are positioned on the mesh surface. We refer to such curves as
surface curves and find them useful handles for deforming thick or
disconnected parts of the mesh, as well as to add bumps/depressions
to the surface mesh. We call skeleton curve a parametric 3D curve
whose control points are inside the object’s mesh. Skeleton curves
can represent the structure of an object and be used to globally de-
form it. Thus, let k be the number of control points of a surface

curve C. A skeleton curve S is obtained from C by: (i) creating
k − 1 planes perpendicular to C, each one halfway two consecu-
tive control points; (ii) For each of the k subspaces delimited by
the k− 1 planes, compute the centroid of the ROI vertices falling
in that subspace; (iii) use these centroids as the control points for
a Catmull-Rom skeleton curve. Deciding which vertices fall in be-
tween any pair of planes is done using two dot products.

The interface allows the user to specify whether the new curve
should be a surface curve or a skeleton one. Surface curves can
be converted into skeleton ones and vice-versa. When converting a
skeleton curve into a surface curve, the resulting control points are
obtained by projecting each original control point onto the closest
surface to the camera along the line connecting the control point
itself and the camera’s center of projection.

One can link several parametric curves by simply clicking on their
control points. Curves can also be merged using the same inter-
action approach. This leads to a simple but effective interface for
skeleton creation. Figure 3 illustrates the process. On the right,
one sees a complete skeleton representing the structure of the dino
model.

4 Mesh Deformation

In this section, we explain how the deformation of a curve is trans-
ferred into mesh deformations in an easy and efficient way. Briefly,
we create a set of frames along the curve and represent the coordi-
nates of the mesh vertices with respect to these local frames. As the
user modifies the curve, the local frames are modified causing the
associated surfaces to be deformed.

4.1 Defining Local Frames

Frenet frames [do Carmo 1976] are quite intuitive and can be com-
puted analytically. Unfortunately, Frenet frames are not defined at
inflection points or along straight segments. Moreover, at inflection
points, Frenet frames can undergo some violent twists [Bloomen-
thal 1990]. We avoid these problems by defining coordinate frames
along the curve using the following algorithm: let ~u0 be the curve’s
unit tangent vector at parameter value t = 0 (point p0). The second
vector (~v0) of the frame at t = 0 is obtained by projecting ~u0 onto
the world XZ plane and then normalizing and rotating the projec-
tion ~u0p by 90 degrees (Figure 5). The third vector, ~w0, is obtained
as the cross product ~u0 ×~v0. If ~u0 coincides with the vector (0,1,0)
in the world coordinate system, this procedure would fail. To avoid
this problem, the components of ~u0 are inspected and the projection
is performed on a world plane that would not lead to a null vector,
by appropriately choosing one of the planes XY , Y Z or XZ.

Figure 5: The creation of a local frame at t = 0. The vector ~u0 is the
curve’s unit tangent vector at t = 0. ~v0 is obtained by normalizing
and rotating by 90 degrees the projection ~u0p of ~u0 onto the XZ
plane. ~w0 = ~u0 × ~v0.

Once a frame has been created at t = 0, we vary t in the interval
[0,1] to define new local frames along the curve. We use the curve
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Figure 6: Local frames along a parametric curve. Frenet frames
computed analytically (left). Frames computed using our algorithm
(right). Note the smooth transitions where the Frenet frames suffer

sudden twists.

position pi and unit tangent vector ~ui at t = ti to define an implicit
plane at pi. We then project the vector ~vi−1 (from the previous
frame) onto this new plane, obtaining ~vi, after the projection has
been normalized. ~wi is again obtained as ~wi = ~ui×~vi. An additional
operation consists in switching the sign of ~wi in case the angle be-
tween ~wi and ~wi−1 is bigger than 90 degrees. This simple algorithm
is very efficient and produces a set of local frames along the curve
that avoid the occurrence of undesirable twists. Figure 6 compares
the results obtained by analytically computing a Frenet frame field
along the parametric curve (left) with the result produced by our
algorithm (right).

Bloomenthal [Bloomenthal 1990] describes a similar algorithm for
obtaining reference frames along a space curve C. In his approach,
the first frame F0 is computed using the curve’s tangent (T0) and
principal normal (N0) vectors at point p0. If C has zero curvature at
p0, N0 is not defined and any vector perpendicular to T0 can be used
instead. The third vector of the frame is obtained as B0 = T0 ×N0.
The frame F1 at point p1, with tangent T1, is then obtained by rotat-
ing F0 around the vector T0 ×T1 in such a way that T0 and T1 coin-
cide. Note, however, that the occurrence of straight segments along
the parametric curve C is relatively common in our application. In
such situations, T0 ×T1 is undefined, and even though F1 = F0, it
is necessary to check if T0 and T1 are collinear and handle this as
a special case. Although Bloomenthal’s approach can be used to
generate frame fields along our parametric curves, we prefer to use
the technique described in this section because it naturally handles
straight segments without the need to treat special cases.

4.2 Local Coordinates for the vertices in the ROI

Given the set of frames along a reference curve C, one can repre-
sent the coordinates of each vertex in the region of interest of C in
terms of its frames. Thus, let πk−1 and πk be the planes spanned by
the pairs of frame vectors (~vk−1, ~wk−1) and (~vk, ~wk), respectively
(Figure 7). All vertices v j delimited by πk−1 and πk will have their
coordinates expressed with respect to the frame Fk−1 = (~uk−1,~vk−1,
~wk−1). If an end point of C is not linked to other curves, C’s defo-
mation will affect all vertices of the mesh beyond that point. More
specifically, if the first control point of C is not connected to another
curve, all vertices before π0 (first plane) will be rigidly transformed
by F0. Likewise, if the last control point of C is not connected to
another curve, all vertices after πn (last plane) will be rigidly trans-
formed by Fn. The case involving blending between linked curves
will be discussed later in this section.

Let (αm,βm,γm) be the coordinates of vertex vm expressed in terms
of frame Fk−1 (i.e., vm = pk−1 + αm~uk−1 + βm~vk−1 + γm~wk−1),
where pk−1 are the coordinates of the origin of frame Fk−1. Also
let vmp and vmn be the projections of vm onto the planes πk−1

and πk, respectively. Such projections are obtained as the inter-
sections of the line defined by vm and the vector ~uk−1 with the
planes πk−1 and πk, respectively. We then associate to vm the ra-
tio rm = dist(vm,vmp)/dist(vmn,vmp) (Figure 7), computed based
on the undeformed curve. dist is the Euclidean distance between

Figure 7: During deformations, the position of vertex vm is main-
tained in the same relative position along ~uk−1 w.r.t. its projections
vmp and vmn on πk−1 and πk, respectively.

two points in 3D. This ratio will be preserved during deformations.

When the user modifies a parametric curve C, its set of frames are
recomputed for the same values of the parameter t. Let C′ be such
a deformed curve. The first frame of C′ cannot be created using the
same approach used for C, because C′’s tangent vector at t = 0 could
require a different world plane for projection, causing the sets of
frames from C and C′ to completely diverge. Thus, let (~u0,~v0,~w0)

be the coordinate frame of C at t = 0 and let ~u′0 be the unit tangent
vector of C′ at t = 0. Also, let ω be the angle between the vectors

~u0 and ~u′0 and let~r =~u0×
~u′0. Thus, the vectors ~v′0 and ~w′

0 are ob-
tained from~v0 and ~w0, respectively, by rotating them around~r by ω
degrees. This is the same kind of operation that Bloomenthal [Bloo-
menthal 1990] uses to propagate a frame field along a curve, but
here it is used only to adjust the first frame of the deformed curve.
Once the first frame of C′ has been defined, its remaining frames
are obtained using the same procedure defined for the subsequent
frames of the original curve.

Given the set of frames of curve C′, the new 3D coordinates of
vm after deformation could be computed simply as v′m = p′k−1 +

αm
~u′k−1 + βm

~v′k−1 + γm~wk−1, where p′k−1 is the point on C′ for
which t = tk−1. This, however, would not take into account possi-
ble stretching applied to the curve when control points are moved
apart. In order to transfer the stretching to the mesh, we scale v′m’s
component along the u′0 direction according the current distance

between π ′

k−1 and π ′

k times the ratio rm. Thus, let v′mp and v′mn be

the projections of the deformed vertex onto the planes π ′

k−1 and π ′

k,

respectively, where v′mp = p′k−1 +βm
~v′k−1 + γm~wk−1. v′mn is found

by calculating the intersection of the line defined by v′mp and ~u′k−1

with π ′

k (Figure 7). The new 3D coordinates of vm are then recom-

puted as v′m = v′mp +αm(rm)dist(v′mp,v
′

mn)
~u′k−1.

The number of frames used along the curve is important to guaran-
tee the smoothness of the deformation. If very few planes are used,
the curve behavior may not transfer well to the deformed mesh. In
all examples shown in the paper and accompanying video, we used
200 frames for each curve.

Twisting, bending and scaling: Once the coordinates of the ver-
tices in a ROI have been represented w.r.t. the frames in a handle
curve, one can deform the mesh. Free-form deformations are per-
formed by interactively moving the curve’s control points around.
Some other interesting effects, such as twisting and scaling, are ob-
tained by operating directly over the frame field of the curve. For
instance, by interpolating, along a segment of C, a local rotation of
the frames vectors ~vi and ~wi around ~ui produces some twisting ef-
fect. Non-uniform and localized scaling effects can be achieved by
independently scaling the vectors that form the frames. All these
operations can be combined to create more complex deformations.
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Figure 8 illustrates the results produced by twisting and bending op-
erations. Figure 8 (a) shows a block as the original mesh. A twisted
version of the block is shown in (b) and was obtained simply by
interpolating a rotation along the frame field of the handle curve,
which is shown to its right. Figure 8 (c) shows the result of bending
the block, obtained by moving the curve’s control points (shown
over). In (d) one sees the combined result of twisting and bending
the block. Note the smooth results and how easy these non-trivial
deformations are obtained.

(a) (b) (c) (d)

Figure 8: Twisting and bending operations performed with our
technique. A reference block (a). Twisted block obtained by in-
terpolating a rotation along the curve’s frame field (b). (c) Bent
block obtained by moving the curve’s control points (shown over).
(d) Twisted and bent block combining the transformations (b) and
(c).

Blending between curves: To avoid possible artifacts in parts of
the mesh where one handle is linked to another (e.g., in the skele-
ton shown in Figure 3 right, several curves are connected at their
endpoints), a blending function is used to transition among the de-
formations. This blending is performed automatically, being com-
pletely transparent to the user. A zero-mean Gaussian blending

function (b(x) = e−x2/(2σ2)) is associated to each control point of a
curve C linked to another curve. Thus, let P be the set of all con-
trol points linked to a given end control point p j of C and let pa be
the centroid of P. Empirically, we found that a standard deviation

σ =
√

dist(p j, pa) works fine. Let vm be a vertex outside the ROI
of curve C. In order to guarantee a smooth transition between the
deformed and non-deformed regions of the mesh, we compute the
influence of p j over vm as the weight wm = b(dist(vm, p j)). Thus,
during the deformation induced by C, the new coordinates of vm are
given by vm = (1−wm)vm +wmvrm, where vrm are the coordinates
that vm would have if it had been rigidly transformed according to
the transformation applied to plane π j (defined by the frame vec-
tors ~v j and ~w j at p j). Since the function b(dist(vm, p j)) quickly
approaches zero as the distance between vm and p j increases, we
achieve a smooth transition between the two regions.

Local self-intersection avoidance: Self-intersection is a common
problem in mesh deformation and several approaches for trying to
avoid it have been proposed, especially in the context of character
skinning [Mohr et al. 2003; Kry et al. 2002]. We take advantage
of the curve’s frame field to devise a simple but effective way of
automatically avoiding local self-intersections. Let Vk be the set
of mesh vertices in the ROI of curve C that are represented in C’s
frame (~uk,~vk, ~wk). The projection of Vk onto πk defines a circle
of influence for Vk (Figure 9). By guaranteeing that the circles of
influence of all such planes do not intersect, self-intersections on
the deformed mesh are avoided.

Let πk−1 and πk be two such planes with origins at pk−1 and pk

created along the curve at parametric values tk−1 and tk, respec-
tively. Let l be the intersection line between πk−1 and πk. Also,
let rk−1 and rk be the radii of the circles of influence at πk−1 and
πk, respectively. If dist(l, pk−1) < rk−1 and dist(l, pk) < rk then
an intersection is assumed. To avoid self-intersections, we rotate

(a) (b) (c) (d)

Figure 9: automatically avoiding local self intersections. (a) The
projection of the vertices associated to a plane πk−1 (onto πk−1)
defines a circle of influence with radii rk−1. (b) l is the line of
intersection of πk−1 and πk. pkc is the point on l closest to pk−1,
the point on C evaluated at t = tk−1. pko is a point outside the
circle of influence of πk−1. (c) The plane πk is rotated by ω degrees
around the line parallel to l passing through pk. (d) After rotation,
self-intersections no longer occur.

the plane πk so that the circles of influence in πk−1 and in πk do
not self-intersect anymore. Thus, let pkc be the point on l that is
closest to the pk−1. Also, let pko be another point along the seg-
ment connecting pk−1 and l passing through pkc, such that pko is
the closest point to pk−1 outside the circle of influence of πk−1 (Fig-
ure 9 b). Let ω be the angle between the vectors ~ac and ~ao, defined
as~ac = (pkc− pk) and~ao = (pko− pk). Self-intersection is avoided
by rotating the frame Fk by ω degrees around the direction of line
l (Figures 9 c and d). Note that in order to avoid self-intersection,
we have forced the vector ~uk of the local frame not to coincide with
the curve’s tangent direction at t = tk.

5 Suggestive Contours

Suggestive contours [DeCarlo et al. 2003] are points on the surface
that are not contours yet but would become with a slightly change in
the cameras viewpoint. Together, contours and suggestive contours
convey the shape of an object quite well and that explains why these
lines are often used in non-photorealistic rendering. As these lines
are simpler than the mesh itself but still represent the major object
details, using them as handles seems to be a promising approach
for deforming complex objects, as the user can abstract some parts
of the mesh and concentrate on the features that convey more infor-
mation.

Creating parametric curves from automatically-extracted contours
and suggestive contour lines and transferring their deformations to
the actual meshes is similar to what has been described for sketched
lines in the previous sections. However, a blending function based
on approximated geodesic distances (as opposed to Euclidean dis-
tances) should be used for better results. Such an approximation
can be calculated using a region-growing algorithm starting at the
triangles where a (suggestive) contour lies and stopping when an-
other (suggestive) contour is found.

Figure 10 illustrates the steps associated with the use of (suggestive)
contours to perform mesh deformation. The two images on the left
show a view of the Homer model (a) and its corresponding (sug-
gestive) contours (b). The lines shown in (b) are automatically ex-
tracted and converted into parametric lines. Figure 10(c) shows the
resulting parametric lines with their corresponding control points
seen as little white spheres. Figure 10(d) shows the result obtained
by moving some control points of the parametric curves associated
to the model’s mouth and eyebrows.
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(a) (b) (c) (d)

Figure 10: Suggestive contours can be automatically computed for 3D models and distorted to perform mesh deformation.

6 Results

We have implemented the algorithms presented in this paper us-
ing C++ and have used OpenGL for visualization. We have applied
our technique to deform several models. The performance measure-
ments were carried on an AMD Athlon 64 3700+ processor running
a 32-bit Microsoft Windows XP with 2GB of RAM memory.

Figure 11: The cactus model (left) was deformed using a single
handle curve sketched over its trunk (center). Independent de-
formations can be applied to the individual branches by building
a skeleton and deforming the curves associated to the branches
(right).

The examples shown in the paper stress how easy deformations can
be performed with our approach. Figure 1 shows the Armadillo
model in several poses and demonstrate our approach’s ability to
perform large deformations using a simple interface. The legs and
arms were modified by translating some control points. In the sec-
ond example of Figure 1 the Armadillo’s body was scaled and bent.
Figure 8 shows a block being twisted and bent using a handle curve
with 3 control points. Note the smoothness of the twisting and the
bending.

Figure 12: Deformation including large rotations. One of the ten-
tacles of the original octopus model (left) was deformed (center). A
close-up view of the deformed tentacle seen from the back (right).

Figure 11 shows a cactus model (left) being deformed by a single
curve sketched over its trunk (center). Note how the branches nicely
follow the deformation. Figure 11 (right) illustrates the versatility
of our technique, which also allows the branches to be deformed
independently, by using a skeleton that mimics the structure of the

cactus. This capability gives animators freedom to express them-
selves artistically. Figure 12 (center) shows a large and smooth
deformation of one tentacle of the octopus model (left). Figure 12
(right) shows a close-up view of the deformed tentacle seen from
the back.

Figure 13: Deforming a horse leg (left) using skeleton constraints.
Each segment between two adjacent control points in the handle is
a Hermite curve with small tangent vectors. The resulting deforma-
tion (right) preserves the rigidity of the limb segments.

Figure 13 illustrates the use of deformation with skeleton con-
straints (i.e., preserving the rigidity of limb segments in articulated
figures). While Huang et al. [Huang et al. 2006] enforce such con-
straints via non-linear least-squares optimization and require that
each articulated segment be a closed mesh, our approach imposes
no restriction on the mesh topology. On the other hand, Huang et
al.’s approach can preserve volume, which ours cannot. We im-
plement skeleton constraints by treating each segment between two
adjacent control points as a Hermite curve [Mortenson 1997] with
small tangent vectors. This produces straight articulated segments
with slightly bent endings, as desired. Figure 13 (left) shows a horse
leg in its original position with a handle curve superimposed. The
resulting deformed leg is shown on the right. Using our approach,
the user can deform each leg at a time in real time.

Figure 14: Deformations of the dragon model. Left: original
model. Center and right: dragon mouth deformed in different ways.
Handle curves shown on top.

Figure 14 shows the dragon model with its mouth opened in two
different ways. The original model is shown on the left for com-
parison and the handle curves are shown on top. Figure 15 shows
another example of deformation produced with our technique. The
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result shown on the right was obtained with a one-step translation
of a single control point of a handle curve associated to the model
on the left.

Figure 15: Original model (left). A deformation performed using
our technique by translating a single control point (right). Note
how the local structures are plausibly re-oriented on the resulting
surface.

Multiple-component meshes, non-manifold and non-orientable sur-
faces pose some challenge to differential-based approaches, which
require computing and/or propagating a discrete frame field based
on the mesh local properties. As the frames used in our approach
live on the handle curve, all these configurations are treated in a
natural and uniform way. Figure 16 (left) shows a horse model af-
ter a ring of polygons has been removed to create two disconnected
components. A handle curve with four control points has been at-
tached to the back of the horse and used to create the deformation
shown on the right. Note that, although disconnected, the deformed
parts align nicely.

Figure 17 demonstrates the power of our metaphor by performing a
deformation on non-orientable and non-manifold surfaces. On the
left, one sees a Moebius strip (top) and a non-manifold surface. The
images on the center and on the right show the deformed models
after moving some control points in each of their corresponding
handles.

Figure 16: Deformation of a mesh with multiple components.
Horse model with a ring of polygons removed (left). Deformed
model obtained by moving some control points. Note how the parts
still align nicely after the deformation.

Model Vertices Triangles Setup (s) Deform. (fps)

Horse 19,851 39,698 0.0545 59.52

Dino 56,194 112,384 0.1550 34.60

Armadillo 172,974 345,944 0.2914 14.94

Dragon 437,645 871,414 1.0697 7.12

Buddha 543,652 1,087,716 3.4130 4.50

Table 1: Times obtained using our technique for deforming several
models. The right column shows the performance of the deforma-
tion (in fps) when deforming all vertices of the model.

Table 1 provides some performance statistics for our technique. The
setup time corresponds to the time required for region segmentation
(Section 3.1), which is performed only once per curve, when it is

created. For these measurements, we have transformed all vertices
of the mesh every time the user modified the curve. Note that we
only need to deform the vertices falling in the ROI of the modified
curve. By transforming all vertices of the model, we define a lower
bound for the performance of our technique when applied to that
particular model. These numbers (last column of Table 1) indicate
that our technique can operate at interactive rates, even with meshes
composed by hundreds of thousand vertices. Depending on the size
of the ROI, our approach can handle meshes containing millions
of polygons in real time. These numbers compare favorably to all
previously known mesh deformation techniques.

Figure 17: Deforming non-orientable (center) and non-manifold
(right) surfaces.

7 Conclusion

We have presented an interactive technique for immediate high-
quality mesh deformation. It is intended as an attractive alterna-
tive for artists and users looking for a simple and quick way of
producing plausible deformations with interactive feedback. Our
approach is based on the metaphor of transferring smooth defor-
mations from parametric curves to complex 3D models, producing
visually-pleasing deformations. The use of parametric curves al-
lows our technique to be implemented using a very intuitive inter-
face, and giving the user fine control over the deformation. Skele-
ton constraints and local self-intersection avoidance are efficiently
enforced, and the use of suggestive contours to guide model defor-
mation provides a way of directly editing visually-important object
details. We have demonstrated the effectiveness and versatility of
our approach by using it to deform, bend and twist several models
and showing that our results are visually pleasing.

By using a set of frames to deform the space along the curve, our ap-
proach is quite general, handling non-orientable and non-manifold
surfaces, and meshes comprised of multiple components. Unlike
other mesh deformation techniques, our approach does not optimize
any aspect of the deformation and, therefore, it cannot guarantee
that the model’s original properties (e.g., volume) will be preserved
after the deformation. However, given its relatively low computa-
tional cost, our technique is considerably faster than previous ap-
proaches for achieving visually-similar results, being able to han-
dle very large meshes at interactive rates. Thus, it provides a good
alternative for artistic prototyping and casual users.

Using other types of parametric curves seems a promising area of
future exploration, as the properties of the curve are directly trans-
ferred to the deformed mesh. One possibility would be to perform
physically plausible deformations using the technique described in
[Lenoir et al. 2005]. Our technique is also suitable for GPU accel-
eration, as the deformation imposed by the curve can be applied to
all vertices in parallel. This should make our approach even more
appealing for prototyping applications.
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